|
2#

楼主 |
发表于 2016-6-22 07:52:07
|
只看该作者
系统电源
最大限度降低功耗和延长电池寿命的有效技术之一是降低系统电源电压,这种方法也与硅半导体工艺技术的最新进展非常一致,工艺技术正不断沿着电源电压越来越低的方向发展。研究系统电源电压和功耗之间的关系非常有趣。在模拟集成电路中,功耗是电源电压的函数,两者基本上线性关系。实际上,与同类型的3.3V系统相比,1.8V模拟系统可大约减少45%功耗。由于电流消耗的额外减少,数字集成电路可节省的功耗则更多。随着电流的额外减少,1.8V数字系统与同类型的3.3V系统相比,功耗可下降75%。
有关电源的另一个旗帜鲜明的观点是“越少越好”。系统电源电压的种类越少,系统内的元件数量就越少,同时能尽量降低PCB设计的复杂性并减少系统成本和尺寸。
0.25微米工艺是高质量、低功耗模拟和混合信号IC的理想选择。这种工艺在典型的电源电压下降到1.8V时工作良好。因此,对于在保持高质量音频性能的同时最大限度减少成本和功耗的设计目标来说,采用1.8V单系统电源电压非常合适。遗憾的是,事情并没有这么简单。这些系统使用的大多数耳机都有32欧姆的阻抗,这意味着为得到可接受的收听音量,电源电压必须大于1.8V。
耳机放大器
由电池供电的产品内的耳机放大器通常要求由单正电源供电。单电源放大器的基本缺点是放大器的输出采用直流偏压,这电压大约为电源电压的二分之一。耳机音圈(或者任何扬声器的音圈)的DC电阻由线圈中金属线的电阻决定,这个电阻非常低,如果施加一个DC电压,音圈上就会有明显的电流流过。这将至少导致音频质量下降,而最明显和最可能的结果是对耳机造成永久性损坏。这足以说明在耳机或扬声器上施加一个DC电压通常是非常蹩脚的设计。
图1:直流偏压的耳机放大器。
直流偏压耳机放大器
用来隔离DC电流的最常见技术是采用去耦电容,如图1所示。在信号路径中放置一个电容可以创建一个高通滤波器,其角频率由耳机阻抗(R)和去耦电容(C)设置,等于1/(2πRC)。通常人的耳朵能够听到声音频率最低为20Hz。根据这个下限和耳机的典型阻抗,可很容易地计算出所需的电容值。对于20Hz的角频率,电容容值取500uF。
很显然,由于成本和在PCB上安装这个大体积电容所需的空间,这种解决方案无法被接受。通常可以接受的折衷方案是采用220uF电容,此时角频率大约为45Hz,而且占用更少的板上空间。虽然这种折衷方案传统上已被用于许多设计中,但它仍然是一种折衷。值得注意的是,这种拓扑不适用于单1.8V系统,因为1.8V放大器无法将耳机驱动到可接受的收听音量水平的能力。尽管存在成本、PCB空间和频率响应方面的局限性,但多年来容性耦合的耳机放大器一直都是便携式音频产品中唯一可行的解决方案。虽然这种拓扑已被用在许多设计中,但当系统要求变得更加严格时,这种折衷成具有显著的局限性。
图2:集成的地居中耳机放大器。
地居中耳机放大器
输出信号地居中(ground-centered)的耳机放大器是一个理想的解决方案。如图2所示,利用与DC电位一样的放大器输出作为耳机回送(地),DC电流将不会流过耳机。与直流偏压放大器相比,这种放大器在低频率响应、节省PCB空间和元件成本方面具有明显优势。然而,地居中放大器对系统的一个要求是同时需要正、负电源电压。
图3:分别基于这两种放大器的音频转换器PCB布局图。
CirrusLogic公司和其它制造商通过集成充电泵来产生耳机放大器所需的负电源电压,从而解决了这个问题。这些充电泵效率比较高,并且仅需最少的外部元件。这种拓扑不但不需要耳机的去耦电容,而且可从1.8V系统获得能产生足够收听音量的功率。充电泵产生负1.8V电压,能有效地为3.6V放大器供电。
与直流偏压放大器相比,地居中放大器具有许多优势:
(1)最大限度地减少了PCB空间。图3给出了需要隔直电容的音频编解码器与集成了地居中放大器的音频编解码器的PCB布局图。
(2)去掉电容C3和C4可节省50mm2以上的板上空间。内部充电泵需要电容C5和C6,这些电容与典型的电源去耦电容的大小相当。
(3)具有最优的低频性能。由于地居中放大器不需要带有大串联电容的高通滤波器(HPF),所以它具有良好的低频响应。图4是两者的频率响应对比。
(4)由单1.8V系统电源供电就能提供适当的收听音量。充电泵可产生负1.8V电源电压,当与系统的1.8V电源组合使用时,可有效地产生3.6V电压来驱动放大器。这种结构使系统可以采用单1.8V电源,以尽量减少功耗,并保持产生足够收听音量的能力。
(5)在上电和断电的瞬态过程中没有噪音。除了具有在直流偏压放大器配置中需要折衷的所有优势外,由于不需要隔直电容,地居中配置在上电和断电的瞬变过程中,不会产生由隔直电容充放电引起的喀哒声和砰砰声。 |
|