音频应用   音频插件联盟,正版插件,欢迎大家选择!

 找回密码
 快速注册

QQ登录

只需一步,快速开始

阅读: 20988|回复: 0

[电子] 基本运算放大器配置是怎样的?

[复制链接]

438

积分

2

听众

131

音贝

音频应用

Rank: 1

积分
438
发表于 2019-11-23 | |阅读模式
音频应用公众号资讯免费发布推广

基本运算放大器配置是怎样的?

必须为运算放大器始终提供直流电源,因此在添加任何其他电路元件之前,最好配置这些连接。图1显示了无焊试验板上的一种可能的电源配置。我们将两根长轨用于正电源电压和地,另一根用于可能需要的2.5 V中间电源连接。板上包括电源去耦电容,其连接在电源和地(GND)轨之间。现在详细讨论这些电容的用途还为时过早,只需知道它们用于降低电源线上的噪声并避免寄生振荡。在模拟电路设计中,务必在电路中每个运算放大器的电源引脚附近使用小型旁路电容,这被认为是良好实践。

2758304c2ebd5b01e6a2c90beeb78c18.jpg

图1.电源连接

将运算放大器插入试验板,然后添加导线和电容,如图1所示。为避免以后出现问题,可能需要在试验板上贴一个小标签,指示哪些电源轨对应5 V、2.5 V和地。导线应利用颜色加以区分:红色为5 V,黑色为2.5 V,绿色为GND。这有助于保持连接的有序性。

接下来,在ADALM1000板和试验板上的端子之间建立5 V电源和GND连接。使用跳线为电源轨供电。注意,电源GND端子将是电路接地基准。有了电源连接之后,可能需要使用DMM直接探测IC引脚,确保引脚7为5 V且引脚4为0 V(地)。

注意,使用电压表测量电压之前,必须将ADALM1000插入USB端口。

单位增益放大器(电压跟随器):

第一个运算放大器电路很简单(如图2所示)。这称为单位增益缓冲器,有时也称为电压跟随器,它由转换函数VOUT = VIN定义。乍一看,它似乎是一个无用的器件,但正如我们稍后将展示的那样,其有用之处在于高输入电阻和低输出电阻。
e086bd91339e9bd4dc8054333d817c61.jpg

图2.单位增益跟随器

使用试验板和ADALM1000电源,构建图2所示的电路。请注意,此处未明确显示电源连接。任何实际电路中都会进行这些连接(如上一步中所做的那样),因此从这里开始,原理图中没必要显示它们。使用跳线将输入和输出连接到波形发生器输出CA-V和示波器输入CB-H。

通道A电压发生器设置为1.0 V最小值和4.0 V最大值(3 V p-p,以2.5 V为中心),使用500 Hz正弦波。配置示波器,使输入信号迹线显示为CA-V,输出信号迹线显示为CB-V。导出所产生的两个波形图,并将其包含在实验报告中,注意波形参数(峰值和频率的基波时间周期)。你的波形应当确认其为单位增益或电压跟随器电路的说明。

缓冲示例:

运算放大器的高输入电阻(零输入电流)意味着发生器上的负载非常小;也就是说,没有从源电路汲取电流,因此任何内部电阻(戴维宁等效值)上都没有电压降。所以,在这种配置中,运算放大器的作用类似于缓冲器,屏蔽信号源免受系统其他部分带来的负载效应。从负载电路的角度看,缓冲器将非理想电压源转换成近乎理想的电压源。图3给出了一个简单的电路,我们可以用它来演示单位增益缓冲器的这个特性。这里,缓冲器插在分压器电路和某一负载电阻(10 kΩ电阻)之间。

52c85d06f19dc77f2a94629449ecf40a.jpg

图3.缓冲器示例

断开电源并将电阻添加到电路中,如图3所示(注意这里没有更改运算放大器连接,我们只是相对于图2翻转了运算放大器符号以更好地安排导线)。

重新连接电源,并将波形发生器设置为500 Hz正弦波、0.5 V最小值和4.5 V最大值(4 V p-p,以2.5 V为中心)。同时观察VIN CA-V和VOUT CB-H,并在实验报告中记录幅度。使用示波器输入CB-H还能测量运算放大器引脚3上的信号幅度。

图形实例如图4所示。

f185a228578a7f90de20c664caeeba0a.jpg

图4.缓冲器曲线

移除10 kΩ负载,代之以1 kΩ电阻。记录幅度。现在移动引脚3和2.5 V之间的1 kΩ负载,使其与4.7 kΩ电阻并联。记录输出幅度如何变化。你能预测新的输出幅度吗?

简单放大器配置

反相放大器:

图5所示为常规反相放大器配置,输出端有10 kΩ负载电阻。

6ad546e0a620b84d582ff41dfa25a7af.jpg

图5.反相放大器配置

现在使用R2 = 4.7kΩ组装图5所示的反相放大器电路。组装新电路之前,请记住断开电源。根据需要切割和弯曲电阻引线,使其平放在电路板表面,并为每个连接使用最短的跳线(如图1所示)。记住,试验板有很大的灵活性。例如,电阻R2的引线不一定要将运算放大器从引脚2桥接到引脚6;你可以使用中间节点和跳线来绕过该器件。

重新连接电源并观察电流消耗,确保没有意外短路。现在将波形发生器调整为500 Hz正弦波,设置为2.1 V最小值和2.9 V最大值(0.8 V p-p,以2.5 V为中心),并再次在示波器上显示输入和输出。测量和记录此电路的电压增益,并与课堂上讨论的原理进行比较。导出输入/输出波形图,并将其包含在实验报告中。

图形实例如图6所示。

b34a7bd8808dffc3bebb7798a0e68815.jpg

图6.反相放大器曲线

趁此机会说一下电路调试。在课堂中的某个时候,你可能无法让电路工作。这并不意外,没有人是完美的。但是,你不应简单地认为电路不工作必定意味着器件或实验仪器有故障。这基本上不是事实,99%的电路问题都是简单的接线或电源错误。即便是经验丰富的工程师也会不时出错,因此,学会如何调试电路问题是学习过程中非常重要的一部分。为你诊断错误不是助教的责任,如果你以这种方式依赖其他人,那么你就错过了实验的一个关键点,你将不大可能在以后的课程中取得成功。除非你的运算放大器冒烟,电阻上出现了棕色烧伤痕迹,或者电容发生爆炸,否则你的元器件很可能没问题。事实上,大多数器件在发生重大损伤之前都能容忍一定程度的滥用。当事情不妙时,最好的办法就是断开电源并寻找一个简单的解释,而不要急着责怪器件或设备。在这方面,DMM可是一件十分有价值的调试工具。

输出饱和:

现在将图5中的反馈电阻R2从4.7 kΩ更改为10 kΩ。现在的增益是多少?将输入信号的幅度缓慢增加至2 V,仍然以2.5 V为中心,并将波形导出到实验室笔记本电脑中。任何运算放大器的输出电压最终都会受电源电压的限制,而在很多情况下,由于电路中存在内部电压降,实际限制要远小于电源电压。根据你的以上测量结果量化AD8541的内部压降。如果你有时间,可尝试用OP97或OP27放大器替换AD8541,并比较它能产生的最小和最大输出电压。
欢迎厂家入驻,推文!免费!微信:yinpinyingyong
您需要登录后才可以回帖 登录 | 快速注册

本版积分规则

音频应用搜索

小黑屋|手机版|音频应用官网微博|音频招标|音频应用 (鄂ICP备16002437号)

Powered by Audio app

快速回复 返回顶部 返回列表