|
频谱仪是一种用于测量信号失真度、调节系统、谱纯度、频率稳定性和交叉失真的多用途的电子测量仪器。频谱分析仪主要用于射频和微波信号的检测,在许多领域有一定的应用。现代频谱分析仪能以模拟方式或数字方式显示分析结果,能分析1赫以下的甚低频到亚毫米波段的全部无线电频段的电信号。如果仪器采用数字电路和微处理器,则具有存储和操作功能;配置标准接口,容易形成自动测试系统。
频谱仪结构图
是一个超外差频谱仪的简化框图。“外差”是指混频,即对频率进行转换,而“超”则是指超音频频率或高于音频的频率范围。从图中我们看到,输入信号先经过一个衰减器,再经低通滤波器(稍后会看到为何在此处放置滤波器)到达混频器,然后与来自本振(LO)的信号相混频。
由于混频器是非线性器件,其输出除了包含两个原始信号之外,还包含它们的谐波以及原始信号与其谐波的和信号与差信号。若任何一个混频信号落在中频(IF)滤波器的通带内,它都会被进一步处理(被放大并可能按对数压缩)。基本的处理过程有包络检波、低通滤波器进行滤波以及显示。斜波发生器在屏幕上产生从左到右的水平移动,同时它还对本振进行调谐,使本振频率的变化与斜波电压成正比。
如果您熟悉接收普通调幅(AM)广播信号的超外差调幅收音机,您一定会发现它的结构与图 2-1 所示框图极为相似。差别在于频谱仪的输出是屏幕而不是扬声器,且其本振调谐是电子调谐而不是靠前面板旋钮调谐。
既然频谱仪的输出是屏幕上的 X-Y 迹线,那么让我们来看看从中能获得什么信息。显示被映射在由 10 个水平网格和 10 个垂直网格组成的标度盘上。横轴表示频率,其标度值从左到右线性增加。频率设置通常分为两步:先通过中心频率控制将频率调节到标度盘的中心线上,然后通过频率扫宽控制再调节横跨 10 个网格的频率范围(扫宽)。这两个控制是相互独立的,所以改变中心频率时,扫宽并不改变。还有,我们可以采用设置起始频率和终止频率的方式来代替设置中心频率和扫宽的方式。不管是哪种情况,我们都能确定任意被显示信号的绝对频率和任何两个信号之间的相对频率差。
频谱仪纵轴标度按幅度大小划分。可以选用以电压定标的线性标度或以分贝(dB)定标的对数标度。对数标度比线性标度更经常使用,因为它能反映出更大的数值范围。对数标度能同时显示幅度相差 70 至 100 dB(电压比为 3200 至 100,000 或功率比为 10,000,000 至 10,000,000,000)的信号,而线性标度则只能用于幅度差不大于 20 至 30 dB(电压比 10 至 32)的信号。在这两种情况下,我们都会运用校准技术1给出标度盘上最高一行的电平即基准电平的绝对值,并根据每个小格所对应的比例来确定标度盘上其他位置的值。这样,我们既能测量信号的绝对值,也能测量任意两个信号的相对幅度差。 |
|