音频应用

 找回密码
 快速注册

QQ登录

只需一步,快速开始

查看: 37331|回复: 0
收起左侧

[作曲] 作曲中的节奏复杂度探析

[复制链接]

549

积分

2

听众

181

音贝

音频应用推广专员

Rank: 2Rank: 2

积分
549
发表于 2018-11-25 21:00:11 | 显示全部楼层 |阅读模式
作曲中的节奏复杂度探析. l0 s# v+ a/ R' j- _- m
6 n3 p/ s# Z% H; U
一、节奏及节奏复杂度3 l4 c* y- ]% Y. g
9 r. `/ o0 z! i* T& C& f/ F
音乐包含节奏、曲调、和声三大要素,然而要怎么精确的定义节奏,却不是一件容易的事,有人说节奏是拍子结构上的一种变化,有人说节奏包括了音乐中所有与时间相关的因素,而知名的音乐学家 Curt Sachs 曾经这样形容节奏这个词,没有广泛被接受的意义。  |, X, S1 G3 U$ C8 m  H. w
& ~) ]2 v! T6 Y6 t' d
二、作曲中的节奏表示法% M4 S  x- H7 n4 w% A/ L/ I% j
$ K2 |4 E9 Q( R8 D  J
目前一共有四种节奏表示法,前面两种是以原本音乐的表示法,也就是以平常所见的乐谱上的形式来呈现,后面两种则是在分析节奏是较常使用到的方式,去除了原本音符的长度,只留下音符出现的时间点。
3 z! ^$ ?  I5 @! O' r$ `5 Z  @6 t% `3 ^( A$ e
第一种方式是音乐当中最熟悉、最常见的表现方式。以五线谱的方式来表示节奏,只有一个小节拍号为 4/4,因为加上了反复记号,所以会重复一遍,最小的单位是十六分音符所以会将此小节切成十六等分。第二种方式通常是使用在打击乐器上,同样是乐谱的表示方式。比起五线谱,少了音高的表示,只是很单纯的表示出节奏。但在打击乐器中,乐器所发生的声响只有一瞬间,实际上是无法表示出音符长度的,所以可以将原本音符的长度去掉,只留下发生声音的那个时间点,其余的位置由休止符补上。第三种方式是音乐学家 James Koetting 在研究非洲复节奏时所提出的表示法 box notation,这样的表示法取代了传统乐谱,以图像化的方式清楚地表现出节奏的模样,比起乐谱更适合用在节奏复杂度上,其中x标示着发出声音的点,也就是音符开始的位置,而原本没有声音的位置,也就是休止符所在的点,则由‧标示。最后一个表示法以计算机科学的方式来表示,在只有 0 跟1 的计算机的世界,将先前的 box notation 转换成为二元表示法,以 1 代替x标示着发出声音的点,以 0 代替‧标示休止符所在的点,这样的表示法可以最直接的使用在计算机程序上,在此篇论文中,系统实践时就是以这样的表示法在进行。5 `( P! g4 o6 y  _4 w- _( O+ r% |

4 d3 I" d0 H% o* W, Y三、作曲中的节奏复杂度分析实践
2 g9 \4 D2 ^2 W: x
9 F1 i. [6 D. \5 u1 C在上述四种复杂度的基础上,我们将原来 Metric 对于复杂度的定义,加上前面所提及应用在不同拍号以及不规则节奏的延伸定义,在系统实践当中,以 Music XML 作为输入的格式,按照拍号把每个小节切割出来,再按照指定的基础单位,建立所有点的权重,因为 Metric 必须以同样 onset 个数的权重总和最大值作为基准相减,所以分别必须算出每个小节的 onset 个数,再按照先前建立好的权重找出最大总和,如果没有不规则节奏,则按照此权重算出每个小节的复杂度,如果在节奏当中发现不规则节奏,则调整权重,按照调整后的权重算出复杂度。+ `6 [4 a7 t: z# Y4 r

' s" E$ @+ `( j4 l拍号上方的数字代表的是一个小节有几拍,称为 beat count,在系统当中可以接受所有整数的 beat count,拍号下方的数字代表的是音符时值,也就是以何种单位当作一拍,称为 beat unit,在此系统当中只能接受二的幂次方为音符时值,虽然也是有以非二的幂次方作为 beat unit 的音乐作品,但其实这样的拍号与音乐节奏,是可以调整而成以二的幂次方作为 beat unit 的样子,所以我们没有实践非二的幂次方作为 beat unit 的拍号在此系统当中。其中预设的拍号有六种 beat count,我们将simple 以及compound 两种拍号的 metrical hierarchy 定义在程序里面。如果使用者输入这六种以外的拍号,则会要求使用者自行定义 metrical hierarchy,如果使用者希望将预设的拍号重新定义,也可以按照输入的 metricalhierarchy 去建立权重。
2 G0 W4 T5 S, e! G: A3 n
& i- ^/ n! r5 g在系统当中,所有的权重都以 0 为最大值作为最高阶层的数值,以下的阶层则以负数表示,以方便在出现不规则节奏时,找到最小阶层的权重值往下减一,如果按照原来 Metric 的正数阶层,在碰到不规则节奏需要设定下一阶层的权重值的时候,则会需要将所有权重值往上加一,因为 Metric 是算出与最简单节奏也就是权重总和最大值的差,所以只要阶层之间的相对位置没有被改变,正数负数并不影响结果。
4 ]' U) V3 x$ O( R4 T0 g' _/ Q" v0 H' }* k6 v4 Y, c, j, p
四、作曲中的节奏产生方法$ W( f* w1 B2 {4 S4 u; X* T, s
% `9 f2 n; c8 [9 @- K  A( a/ X2 Q
上述实践系统除了将乐曲分析节奏复杂度以外,也实践了以节奏复杂度为基础的节奏产生方法,将一个复杂度的数值反过来产生出一小节的节奏,以 Metric 复杂度定义为基础,让使用者指定拍号、基础单位以建立权重,指定 onset 个数、输入复杂度,建立出最简单节奏也就是权重总和最高、复杂度最低的节奏,然后以移动 onset 使其复杂度增加,直到符合指定的复杂度,另外也可选择加入不规则节奏,提高复杂度。& d- d  f4 P9 Z  U# F) X' e2 n
# L5 p5 `" j$ d* B# g0 ~) @
就节奏产生的步骤而言,假设我们要产生出一个拍号 4/4、基础单位为十六分音符、小节里面一个有六个 onset 的节奏,第一步,首先我们找出权重值当中六个最大的数值,第一个一定是0 所在的位置也就是第一拍,第二个是-1 所在的位置也就是第三拍,然后第三个与第四个则是第二拍与第四拍,权重为-2 的两个位置,接着剩下两个,我们从下一层-3 当中随机选出两个点,于是将 onset 都放上这些点的位置,成为了复杂度为 0 的最简单节奏。建立了最简单的节奏之后,再按照输入的复杂度,去移动 onset 的点,符合我们所指定的复杂度值。以复杂度 3 为例子:首先,我们随机指定一个 onset 的点,假设我们找到了权重-3 的这个位置,然后移动到-4 这个位置,我们的复杂度就变成了 1;进而,我们再随机指定一个 onset 的点,假设我们找到了权重-2 的这个位置,然后移动到同样是-4 的另一个位置,复杂度就变成了 3。这样一来,就可产生出符合我们所指定的复杂度的节奏。有一点需要特别注意的,如果设定了某些拍子会有不规则节奏产生时,我们会从调整过的权重去寻找最简单的节奏,但此时所建立出来的最简单节奏的复杂度值,有可能不是 0。
欢迎厂家入驻,推文!免费!微信:yinpinyingyong
您需要登录后才可以回帖 登录 | 快速注册

本版积分规则

音频应用搜索

小黑屋|手机版|音频应用官网微博|音频应用 ( 鄂ICP备16002437号 )

GMT+8, 2025-6-10 00:30 , Processed in 0.023221 second(s), 7 queries , Redis On.

Powered by Audio app

快速回复 返回顶部 返回列表