音频应用

 找回密码
 快速注册

QQ登录

只需一步,快速开始

查看: 29117|回复: 3
收起左侧

[资讯] 从动圈到离子 梳理扬声器喇叭的发展史

[复制链接]

282

积分

2

听众

52

音贝

音频应用

Rank: 1

积分
282
发表于 2017-11-27 10:26:14 | 显示全部楼层

Hobrough发现带状喇叭后的三十年中,他以经营空中绘图和靠着自动机械的专利贴补,持续进行研究,终于在1978年发展成功频率响应低至400Hz仍然平直的带状单元(当时产品只能到600Hz),并且不会融化、破碎或变形,失真则只有1%。Hobrough与他的儿子Theodore Hobrough还获得一项专利:与带状高音搭配的多丙烯低音所使用的无谐振特殊音箱。不过他们以Jumetite Lab为品牌所制造的喇叭,一心想以较低价格提供给大家使用,在市场上却没有红起来。后来包括加州柏克莱的VMPS Audio、爱荷华市Gold Ribbon Concepts、麻州的Apogee Corporation,都发展出比Jumetite Lab频宽更大的带状喇叭系统。Gold Ribbon制造了频宽最大的带状驱动器(200Hz-30KHz),它们不是用铝,而是以厚度仅1微米(百万分之一公尺)的金制成振膜。不过最成功的,却是Apogee公司。身兼艺术经纪人与音响玩家的Jason Bloom,加上他的岳父Leo Spiegel - 一个退休的航空工程师,共同组成Apogee。它们用古典带状驱动器负责中高音,100Hz以下使用另一种准带状驱动器,近年来也加入锥盆低音作混和设计,评价都相当的高。

另外有一个带状喇叭家族的远亲 - BES(Bertagni Electroacoustic System)脉动振膜喇叭。BES跟典型的静电喇叭或Magneplanar平面喇叭一样,都有一个开放的架子与一块平面振膜,声音向前后辐射。不过BES不是很薄的金属板,而是厚度不一的泡沫塑料,外表有点像立体地图。BES的设计使振膜表面有多种谐振模式,振膜的不同部份在不同的频率部份振动,振动的方式不是机械活塞式,倒像随着宽广音频而均匀振动的音叉。BES的设计引起很大争议,最后当然就不了了之了。

平面喇叭
1416298562189994.jpg

在带状喇叭演化的过程中,衍变出一种平面动态喇叭,也称为假带状喇叭,它的问世要归功于美国3M的工程师Jim Winey。Jim Winey原本是业余音响爱好者,他很喜欢静电喇叭,但又觉得KLH-9太过昂贵,应该有办法降低成本才对。有天他获得灵感,他发现用于冰箱门边的软性陶片磁铁,质量轻、成本低、切割制造容易,很适于做磁性结构。这种磁铁可均匀的驱动扁平、宽大的整个振膜表面,可用在双极辐射型态的塑料振膜喇叭。Jim Winey设计的喇叭振膜上有许多细小的金属导线,金属线接收来自扩大机的讯号,并配合永久磁铁的磁场产生吸、推作用。1971年,Winey正式推出新型态的喇叭,起初命名「静磁」(Magnestatic),后来改名为「平面磁」(Magneplanar)。

Magneplanar上市后得到很大的回响,包括Strathearn、Wharfedale、JVC、Cerwin-Vega、Thorens等公司纷纷发展不同型态的平面动态喇叭,其中最有名的是Infinity。Infinity推出的Quantum Reference Standard附有双扩大机与电子分音器,它不是用一整块振膜,而是由许多小振膜组成。QRS高两米,宽一米,一共有20个高音单元,其中13个向前,其余向后,垂直成一直线排列。中音则有三个单元,也是垂直排列。加上一只15吋低音,使得QRS可以发出极为震撼的音量,频率也超出可闻范围。后来的EMIT高音(Electro Magnetic Induction)与EMIM中音,也是一种平面振膜,与后来Genesis所用的高音已经不太一样,Genesis的高音可以视为带状单元与平面单元的混合设计,而中音部份Genesis的大喇叭都采用带状单元,与Infinity分道扬镳。不过我们可以看到Infinity从IRS所建立的巨型喇叭架构,这么多年来仍是Hi-End扬声器的最高典范。

平面喇叭也有其限制,它的磁结构使得只有磁场的边缘通量能与振膜上分布的「音圈」相互作用,因此效率都不高,到目前这个现象能然存在。再一方面,平面喇叭所用的振膜比静电喇叭或带状喇叭都来得重,因此会限制它的频宽,过去只有Audire一家公司使用全音域的平面驱动器,连Magneplanar自己的喇叭后来都改采带状单元的中高音,加上平面振膜低音组合而成。Burwen与日本山叶曾利用平面振膜制成耳机,Pioneer则放弃磁性平板,改用高分子聚合物来制造耳机,但这些产品似乎都没有获得肯定。

海耳喇叭

非传统式喇叭中最成功的要属海尔式设计,就在Winey完成第一个平面动态喇叭后不久,德国物理学家海尔(Oskar Heil)研究出一种很高雅的带状喇叭变形物,他称为气动式变压器(Air Motion Transformer)。海尔的发明与平面动态喇叭很像,使用一层很薄的塑料振膜,上面覆以导电的铝制「音圈」。不过海尔式喇叭的振膜不是拉紧的,而是打褶的、松松的挂在架子上,因此导线音圈位于一堆垂直磁铁的间隙内,当磁力交替挤压弯曲皱褶的振膜,再将它们推开,空气就随着音频而挤压发声。

这样的设计有很高的效率,振膜上的强大磁力可降低有效质量电抗或音频阻抗,这也是「气动式变压器」名称的由来。事实上这种喇叭就是声音变压器,跟号角一样,较低的有效质量使它的高频可以往上延伸,普通的海尔驱动器有300Hz-25kHz的频宽,完全不需要等化。虽然海尔博士对自己的设计信心满满,认为自己的喇叭才是合理,别人的喇叭都是奇特,但因为制造质量掌控不佳,低音单元的配合又过于简陋,所以海尔喇叭逐渐淡出市场。
1416298574302462.jpg
会冒火的离子喇叭

当贝尔实验室的Rice与Kellogg面对许多未知时,称为响弧(Singing Arc)或环形放电喇叭的怪物,大概是最令人敬畏的。早于1920年代,无线电技术员就发现,用来调变发射机的高压电讯号有时会形成蓝色的球状发亮气体,广播的声音会从发亮的球体传出来,声音不大但很清楚,有人形容:简直很火舌一样。Rice与Kellogg并没有认真去研究这个现象,因为这种发音装置频宽不足,还会发出大量臭氧。1940年代,法国核物理学家Siegfried Klein再度发现此现象,并尝试开发新的喇叭,1950年他替新产品命名为「离子喇叭」。这种设计没有机械谐振,没有质量,有无限的顺服性,似乎是喇叭的一大突破。

英国的Decca、法国Audax、德国Telefunken、英国Fane与日本Realon都纷纷投入离子喇叭的研究,但首先商业化上市的却是美国Dukane(Electro Voice),它们在1962年推出名为Ionovac的新产品,后来改由American Audio Com.生产,持续了很长一段时间。至于Siegfried Klein本身并未参与生产,他继续研究,神奇的离子喇叭犹如烛光一样,可以朝它用力吹气而丝毫不损音乐播放。离子喇叭的另一优点是效率很高,105dB的音压只需10瓦的扩大机即可达成,频率响应也可降至1000Hz左右。Siegfried Klein的设计由德国Magant生产,但美国禁止出售,因为臭氧量超过标准,而且另一个Hill Plasmatronic的品牌也威胁Magant独占地位。
1416298593497959.jpg
真正的锥型喇叭

1985年由Ohm所推出的Walsh,其创意足以和BES相提并论,也是第一对真正的锥型喇叭,不但用锥型单元,喇叭本身就是个锥型。Walsh只用一个单元处理20Hz-20kHz的广阔频率,锥型驱动器放在音箱顶端,音圈和磁铁在上面,振膜朝向音箱内部。Walsh以管制的分解方式工作,频率上升时,对音圈起反应的纸盆范围缩小;频率较低时纸盆活动范围增加。未达到此一目标,纸盆由数种不同材料的同心环组成,同心环的作用等于低音滤波器。环越大,处理的频率越低,最低的频率使整个纸盆运动;高频则只用很轻的振膜维持,以阻尼的方式维持频率响应平直。这种设计不论相位或振幅都有很好的线性,最主要是它能180度发声。

号角喇叭
1416298601156330.jpg

1416298633125900.jpg

1919年,美国物理学家Arthur G. Webster发明了指数型号角喇叭,由于高达50%的效率(一般的动圈式喇叭的效率只有1-10%,Klipsch的号角喇叭效率约为30%),很快就被普遍运用在剧院、体育场等需要大音量的场所。号角喇叭最大的特色就是效率高,一点点功率就能发出极大的声响。它的缺点则是不利于低频回放,如果要回放低频,需要有很长的号角,以回放50Hz频率为例,号角的开口直径要两公尺,长度则要大于五公尺才行。1940年美国工程师Paul W. Klipsch设计了一种体积较小适合家庭用的折迭式低音号角扬声器,利用房间角落装置驱动器,把房间的墙壁当成一个超大的号角,在Klipschorn庆祝五十岁生日时,这型喇叭仍然老当益壮的继续生产中。1927年就创立的Altec Lansing公司是另一个号角喇叭的传奇,1956年所推出的A7「剧院之声」,到现在仍有人捧场。1932年成立的英国Vitavox,在1947年推出可媲美Klipschorn的CN191号角喇叭,频率响应已经可达20Hz-20kHz,目前也仍在预约生产中。
欢迎厂家入驻,推文!免费!微信:yinpinyingyong

282

积分

2

听众

52

音贝

音频应用

Rank: 1

积分
282
发表于 2017-11-27 10:29:08 | 显示全部楼层

号角喇叭的特性会因号角长度、形状与使用的材料不同而有所差异。从早期的铁制、铝、锌号角,逐渐演变而有塑料、水泥、木头号角、合成材料号角等多种材料。设计得当,可以把号角喇叭音质较不细致的问题做部份解决;设计不当,甚至会有吼声效应出现。号角按照形状可分为双曲线型、拋物线型、指数型和圆锥型等,其中指数型号角最常被使用。有些号角的指向性过强,还必须在前端加挂音响透镜(Acoustic Lens),以增加声音扩散的角度。一些简化的折迭号角陆续被提出,有些设计以短的号角和房间墙壁加强喇叭背面所发出的低频,同时直接从锥盆前方发出中、高音,这种背后负载的折迭式号角喇叭通常都有不错的效果。

目前的号角喇叭多半搭配锥盆式低音使用,由于号角通常效率都在100dB以上,所以运用上并不是那么容易,比较成功的厂商有JBL、Electro-Voice、北欧的Einstein、法国Jadis(独特的Eurythmie 11足可留名青史)、美国Westlake,以及意大利Zingali等。

1416298640900719.jpg
气垫式喇叭

除了单元本身的改良,从五○年代开始,工程师也在音箱上动脑筋,希望用同样的单元就能表现出更好的效果。其中最著名的设计有两种,一种是气垫式喇叭,一种是传输线式喇叭。

1958年立体声唱片问世,音响进入立体世界,喇叭不像唱头等需重新设计,消费者多买一只同型喇叭就可以了。但也正因如此,体积庞大的喇叭不再受到青睐,大家需要小巧又有足够低频的新产品,气垫喇叭应运而成。造成气垫喇叭流行的背后功臣,应该是晶体扩大机,他提供了不发热的大功率,来应付气垫式设计带来的低效率问题。气垫喇叭同时也是大功率扩大机的幕后原凶,七○年代许多人都有这样的观念;不是大出力扩大机就不好,不是气垫式喇叭就不够高级。

气垫式也就是密闭式的一种设计。当单元运动时,如果背波传到前方,会造成低频讯号抵消,所以有无限障板的概念产生。一个密闭的箱子也可以当作无限大障板,使前、后波彼此作用的机会降到最低。低音反射式则是无限大障板的衍生设计,由于锥盆的尺寸大小与共振频率会限制喇叭的低频表现,所以在装一个具有开口的音箱可延伸低频响应。开口的大小由音箱体积和单元的共振频率所决定,当音箱反射发声相移,使开口和锥盆发出的低频相同而产生加强效果。

1954年AR的创办人Edgar Villchur推出气垫式喇叭,改善一般密闭式音箱的刚性空气导致低频快速衰减的问题。动圈式单元通常是由锥盆与音圈构成,锥盆边缘由弹性物质支撑,这使得它无法有自由空气振动频率。如果在气密式音箱中塞满吸音材料,扬声系统会产生有比单独驱动器还高的振动频率,Edgar Villchur把自由空气振动频率约10Hz的单元装到1.7立方呎的气密音箱中,扬声器共振频率提高为43Hz。这种设计一方面使系统的失真大为减少,一方面还能发出深沈的低频,缺点则是效率大为降低。
1416298691668047.jpg
传输线式喇叭

传输线式喇叭最早称为迷宫式设计,喇叭单元被装在音箱的一端,透过一个复杂而且很长的调协通道,单元的背波从另一端的开口被扩散出来。第一个迷宫式设计是Banjamin Olney在1936年为Stromberg-Carson所设计的,他将一个共振频率为50Hz的单元装入迷宫式音箱中,结果其共振频率降到40Hz,并且在40Hz的半波75-80Hz获得增加,从而产生良好的低音。但他同时发现响应曲线产生不少峰值,这些峰值来自音箱通道本身的共鸣,于是他在通道里铺设吸音材料与导板,把150Hz以上的频率在开口处截止。迷宫式设计可以获得良好的低频延伸,但它的制作麻烦,又比不上经济的低音反射式获致做简单的密闭式有竞争力,所以五○年代Carson再度推销迷宫式设计,仍然没有成功。等到六○年代中期迷宫式喇叭重出江湖时,它有了新的名字 - 传输线式喇叭。

全音域喇叭
喇叭单元从单一的全音域设计,逐渐发展成多音路设计,工程师发现到不同频率单元间有许多衔接的问题,包括分频点、分频斜率、灵敏度、相位等都可能产生误差,于是有两种新的思考方向被提出来,一种是全音域喇叭,一种是同轴喇叭。
欢迎厂家入驻,推文!免费!微信:yinpinyingyong
您需要登录后才可以回帖 登录 | 快速注册

本版积分规则

音频应用搜索

小黑屋|手机版|音频应用官网微博|音频应用 ( 鄂ICP备16002437号 )

GMT+8, 2025-6-8 18:57 , Processed in 0.026306 second(s), 7 queries , Redis On.

Powered by Audio app

快速回复 返回顶部 返回列表