# R$ K. @1 d! h3 Q7 H
图4 % o9 o- _/ P1 b" G( w7 I. S' e+ s# C% F' l) F (, 下载次数: 864)
上传
点击文件名下载附件
下载积分: 音贝 -10 RMB
2 t9 D* z% }3 Y图5 1 P7 a/ @8 F, N' h9 ~5 s! ~3 [6 a
5 F% c, G7 e' }- f6 z& U这个曲线是这样测量的:在消音室里边放置扬声器和麦克风(如图3左上角),扬声器需要被校准,使得它在房间里边的频响是平直的(如图3红线所示)。再把麦克风换成一个假人头(如图3左下角),假人头的鼓膜处安装有一个麦克风,在这种情况下测量麦克风接收到的频响曲线,结果如图3蓝线所示。 $ B: O3 j- N1 x4 m- [7 J1 \4 r: g: F& W) I2 N' z
可以看到人耳听到的声谱是不平直的,譬如在2700Hz处有明显的增强,而且有18dB之多。可见人耳听到外界的声音是扭曲的,而且还很严重。这种扭曲可以看做一个变换关系,把它称作“头部相关传递函数(Head-related transfer function, HRTF)”。通过HRTF,可以把无人头时的声场值变换成有人头时鼓膜处的声场值。% t# b& O- v+ \. k1 O
W. J& `" d; s1 @' s. [) A另外,这个曲线在自由声场下与在散射声场下的测量结果是不同的,声源摆放的方位不同结果也不同,换另外一个型号的假人头也不同。如图4所示,它展示了声源处于多个角度测量出来的结果,结果都是不同的,在90°的情况下频响还出现了两个峰。图3、4展示的是自由声场的情况,图5展示的是散射声场的情况。声源遍布房间,声音到处反射,各个方向地入射到人耳里边(如图5左)。从图5右可看出,散射声场和自由声场的频响是不同的(蓝线)。不过有趣的是,如果把自由声场在各个方向的频响平均起来(红线),就得到了散射声场的结果。这其实也是容易理解的。2 u, Z: V: C1 h# B2 y. J
3 u3 r5 j# L$ {4 n/ Y' K: f, C. b由以上的讨论可知HRTF依赖于声源、环境、耳朵这三要素。由此也体现了这三要素是一个整体,不能分开来看待。( U: L0 N+ T8 d8 W6 K8 _8 G
% k; v$ d0 u. Q4 e2 \, U
说明了人的耳朵是如何听音之后,就不难说清楚为何HiFi的关键是录音了。& t* k4 M9 K6 u; W9 K
8 |: N% @: F+ P
这原因很简单,因为录音的麦克风通常都是在人头的外面(譬如图1中的M1, M2点,这个人头可以是假人头也可以是真人头),而不是在鼓膜(E1, E2点)。 : K0 t+ U1 V# B, l; ]2 q; Y1 \. ~" N% d0 I1 P. c
从物理原理上讲,在仅知道M1、M2点的声场值的情况下是无法推算出E1、E2点的声场值的。这就好比如想拍一个妹子的正面照,结果拍了侧脸,那么就只能靠PS高手把侧脸PS成正脸了。然而,这种PS是不严格的,它只是一种艺术,一种想象,一种创作,并没有正确的答案。同样地,耳机(准确来说是耳机和人耳的共同体)要做的就是要把这个声音利用HRTF进行变换,变换成E1, E2两点的声场后给我们聆听。 g) q# V6 T2 l/ G5 _! D$ ^: k! D, ^9 e4 i
然而正如上面所说,HRTF是多种多样的。对于不同的M1, M2点,不同的声源位置,不同的场景,不同的人耳结构都会导致HRTF不同。耳机厂商不可能知道你所听的音乐是在哪些点录制的,对于声源位置、场景布置、耳朵结构更加是一无所知。不同的厂商,不同的耳机,有自己一套风格的HRTF,这使得不同耳机的风格迥异。但是,没有哪种能说是对的,因为严格来说在录音的时候就已经犯错了。 % v$ d$ J1 Q8 m, b$ U) Q ; j+ B' U, u! \& i另外要再次强调的是HRTF跟人耳结构是密切相关的。换句话说,同一个耳机不同人听,HRTF是不同的,所以不同人对同一款耳机的评价存在分歧是很正常的。这正如一副专门为我配好的眼镜戴到别人头上可能会模糊不清,甚至会头晕目眩一样。耳机,严格来说是需要定制的,而且不仅要对人耳进行定制,还要对录制这首歌时的声源和环境进行定制,这显然是不现实的。! U) K7 ^. `$ Q
. H- m' o8 a' z% k, b
那么如果把录音的位置改成在E1, E2点呢?答案是可以的,而且在理想情况下可以使听者获得完全无异于现场的临场感,达到区分不了现实和虚拟的程度。这种录音方法叫做人头录音。它需要把人头模型放在现场,而且麦克风安装在鼓膜处(E1, E2)。但是它有很多缺点,使得这么多年来人头音乐一直无法得到推广。其中一个很重要的原因就是因为HRTF对于不同的人耳有明显的差别。 0 j% j l" k: c2 w8 L5 k) L2 e, m5 j5 o, Z
总之,如果录制的时候不是采用人头录音,那么以现有的通过耳机来播放的方法是不可能HiFi的,哪怕播放器和耳机有多高端都无济于事。
作者: tb-303 时间: 2010-7-16 09:14
二、什么样的HRTF才是理想的? # a3 S* _! R3 X) @(, 下载次数: 692)
上传
点击文件名下载附件
下载积分: 音贝 -10 RMB
/ n3 ]7 X' i x6 H, U+ u
图6& ~9 S! G8 g7 i4 s X
) E# r% x' |% L8 {* O7 \6 | H (, 下载次数: 708)
6 Q* F/ ]7 o8 o% u
图88 S E9 b$ x, o: j' e! V* s( D" G
; U- S' r1 q' j+ _+ ]/ c ^7 |/ h8 [8 x; z. A
上面介绍的都是在现场聆听或者音箱聆听的情况,现在我们来考察一下当我们用耳机聆听的时候会有什么差别。音频界多年的经验积累总结出了这样的结论:一个好的耳机,它听起来应该像一个好的音响在一个好的房间里那样。其实这个结论透露出一种无奈:因为录音时犯下的错误,使得耳机无法精确还原现场的声场。为了让听者听得舒服,才迫不得已使用这样的方法来调音。' V+ @" `6 s: S n, F* O( F
2 S* Y- I7 o Z" t/ d" y如图8所示,细心的读者相信不难发现当入耳式耳机塞住耳道的时候,声音出不去所以不可能与房间相互作用。另外,耳廓完全暴露在声场的外面,如图2所示的耳廓效应被绕过去了。原来开放的耳道变得闭合了,耳道的声学性质改变了。因此入耳式耳机需要模拟耳廓效应,需要模拟开放耳道的声学特性,需要模拟录音时的声源和环境。5 U+ s% j7 p7 k* Y
3 {4 t. {& I0 c; e' E通常来说,如果声源、麦克风、散射体之间的距离两两都离得足够远(意思是距离比起它们各自的线度和声音的波长都足够大),那么散射体性质的微小改变对麦克风录制到的声音的影响是不大的 。这其实不难理解,譬如甲和乙在一间数百平方米的房间里隔着十几米在谈话,中间5米的地方走过一只猫,那么这个猫的存在与否都对听者的听感没什么影响。这种情况下,声音前进的流程可以简单地表述为:声源发声-->环境散射-->人耳扭曲声场-->鼓膜接收声音。反之,如果甲和乙在小房间里边挨着说悄悄话,如果在两人之间钻过一只猫,那么对声音的影响就很大了。这种情况下,声音前进的流程就不明确了,声源、环境、人耳会互相作用,不再是单向的流程了。% p5 ?0 S+ l! w$ v" S
$ @1 _& D4 p( p$ m1 d: p5 M
运用这个结论就知道入耳式耳机的难处了:此时“房间”和人耳已经合体了,它是一条狭窄短小的耳道,耳机振膜和鼓膜的距离很近。耳道哪怕有一点点的变动,都会对声音产生很大的影响。调音师按照他的耳朵把声音调好了,放到别人的耳朵里听起来就完全不是那回事了。常听入耳式的朋友应该都有这样的体会:换一个耳套声音就变了,耳套塞得紧一些低频就强了,耳屎多了低频就变了。这充分体现了入耳式耳机的音质随环境变化的高灵敏度特性,这是入耳式的劣势。同时这个特性会导致入耳式耳机的测量结果容易让人困惑。这个在下面第四部分会看到。- |5 X* Z# N( Y7 a$ G8 C
+ i, w' Q! ?$ m& L, L那么封闭式头戴呢?封闭式头戴包住了耳廓,耳廓效应天然地包含在里边了,耳道也变得相对开放了,不再需要大幅度地模拟耳廓效应和开放耳道特性,同时“房间”大了,振膜和鼓膜的距离也远了。这使得音质随环境变化的灵敏度下降了。然而要说明的是耳廓效应和开放耳道特性还是需要模拟的,因为这个“房间”还是小,振膜和鼓膜还是不够远,振膜、耳道、鼓膜依然会互相作用,耳廓效应和耳道特性还是跟在大房间里不同的。& B5 Q& y& J. Z7 k3 _
) r( _2 y( Z _) B
开放式头戴是开放的,耳道和外界相通了,这使得等效的“房间”更大了,声音前进流程的单向性增加了。音质随环境变化的灵敏度更小了。所以一切都更好了。开放式头戴有着最稳定最自然的声音,这是它的优势。. U' q# ~5 `! U
( g w0 [0 h9 f/ U
四、利用测量数据判断耳机声音特性9 h# `- U0 n: H7 c* u w
g2 R0 A N M. u- M) h( }Etymotic ER4PT:* l( n% N C& S (, 下载次数: 873)
上传
点击文件名下载附件
下载积分: 音贝 -10 RMB
3 P5 v& S" Z/ n8 Z 0 b' c! l4 o) E - V( M0 W+ L) X2 ~8 ~图20很多封闭式耳机(譬如入耳式、封闭式头戴)在3kHz附近阻抗都会有些非常规的隆起,如果结合相位曲线一起看的话,其形态跟上面提及的共振类似。回忆一下Harman目标曲线在3kHz处有明显的峰就知道这其实是设计为之了。设计者是通过音腔的共振来达到增强这个频率的声压的目的。这种共振反作用到音圈引起阻抗的变化。再次观察频响曲线会发现这个阻抗隆起的位置恰好和频响的峰位是对应的。 $ @, P' V6 I0 m. W ) x. g+ H$ S$ v: }$ g& gSony XBA-3iP: $ E# O: A+ r5 ?/ g: Z, W( d3 L(, 下载次数: 884)
上传
点击文件名下载附件
下载积分: 音贝 -10 RMB
: ]$ y, E% L) Z& X6 W7 |( X 3 y0 n8 g, N* T, O& T图21一些耳机的阻抗曲线非常的振荡,因为这是一个多单元耳机。每一个单元都有自己的阻抗特性,不同单元之间又有相互作用,所以曲线看起来非常复杂。一般来说,要通过阻抗曲线判断耳机有多少个单元是很难的,但是看到这样的曲线起码可以知道不止一个单元了。不过这个耳机有个问题不能被忽视,就是它的阻抗随着频率的变动太大了。400Hz一下只有10Ohms,到了8kHz竟然接近90Ohms,这有9倍的差异。那么如果播放器的输出阻抗恒定是10Ohms,那么在400Hz以下耳机的分压是50%,8kHz处分压是90%,多出80%。如果输出阻抗是90Ohms,那么在400Hz以下耳机的分压是10%,8kHz处分压是50%,多出400%!这意味着这款耳机在高输出阻抗的播放器里播放将会有较为严重的音染问题,是一款很挑播放器的耳机。 * u5 Q0 L" J* A' t1 e$ B/ y' w1 k+ g @0 z! j+ g) {
Sennheiser HD 449:5 X* D4 M0 \/ g. x# U/ ]& K, j2 i (, 下载次数: 910)
上传
点击文件名下载附件
下载积分: 音贝 -10 RMB
) }( j W M9 s# n" Y0 p
8 f' G% }3 G" e9 I& D b& \# a' v
图22耳垫共振也是一个有趣的问题,一些廉价的耳机所用的耳垫是弹性海绵而不是记忆海绵。弹性海绵容易产生共振,这个共振回馈到音圈就会产生阻抗奇异的现象。观察图22,可以发现在100Hz到200Hz之间,频响曲线有些摇摆,阻抗曲线有些非常规走势,同时隔音谱在这个频率段也出现不仅不隔音反而放大声音的现象,这种现象就是海绵质量不佳导致共振造成的。通常来讲,这种共振带来听感上的影响是比较小的。) u8 q- U# J/ P. k: o
/ R1 Q7 ]8 O3 c. ~3 W: j$ i
AKG K581LE: ' l& d( _' I2 f(, 下载次数: 881)
上传
点击文件名下载附件
下载积分: 音贝 -10 RMB
3 A* j) I7 k! [: i
" o$ o. q9 w# x: |$ u: V, Q0 E0 A$ ~, G8 q; Y X
图23耳机佩戴的稳定性也是个很重要的指标,这个稳定性体现在多次佩戴所得到的听感是否一致。也许读者早就已经注意到频响特性里的灰线总是有很多条,这是因为Tyll Hertsens总是把耳机戴上假人头后测一次,测完后把耳机取下来再戴上去测一次……如此类推,最后得出多次测量结果。多次测量的好处一方面是可以后期进行平均获得更加平滑的结果,另外一方面就是可以用来检查耳机佩戴的稳定性。前面已经说过,如果佩戴不牢导致漏音,最容易受影响的就是低频。从图23可以看出,不同测量,低频部分的曲线都有明显的差异,表明这款耳机的音质很容易随着佩戴效果的变化而变化。$ F: r( M5 w- W' ?$ W2 \
6 I9 a) {+ a* s1 u下面介绍两个概念:分割振动和频率梳现象。分割振动指的是振膜上不同点的振动不相同的现象。这可以用日常生活的例子来理解:用双指捏住一张纸的中间部分,然后以5Hz的频率甩动,按道理5Hz属于次声波,人耳是听不到的。但是我们却能清晰地听到纸张发出来的声音,这就是失真了。这种失真就是因为纸张太软,没法处处跟随手指的运动造成的,捏住的地方跟随得很好,但是远离捏合点的地方就很难跟随了,这就是分割振动。相反地,如果捏住的是一块玻璃就不会听到这些本不应该听到的声音了。耳机的振膜虽然已经竭力做到很硬,但是毕竟不是刚体,在某些频率下以大音量回放就可能会出现明显的分割振动。分割振动对音质的副作用是明显的,它在THD谱里表现为一段较宽的隆起,类似于驼峰状,在阻抗曲线里边也会有不规则的形状。 8 W" _1 V b. k$ x: A/ @ : c: n( m Z3 l频率梳现象可以简述如下:声源发出向前和向后两束声波,向后的那束声波碰到壁反射后变成向前走的声波,这列波跟原来向前的声波叠加而产生干涉。这个干涉可以相消也可以相长,可以证明,如果500Hz是相消的,那么1kHz就是相长的,1.5kHz相消,2kHz相长……如此类推,等频率间隔是它的重要特征,而且相长与相消总是梅花间竹地出现,所以如果出现失真,那么在THD谱里边应该是等间隔的比较窄的峰,同时在阻抗曲线里边也有反映,但通常是比较轻微的,不会使得曲线变得很不规则。这种失真通常对音质的影响比分割振动小。 + \1 {! u' `* f1 C7 y( |# `" E- R1 q ) a. Q* L, ~2 {7 @( t; \AKG K812: w! [, j1 t& _; f8 d6 ^